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Abstract. Numerical 1D-3V solutions of the Wong-Yang-Mills equations with anisotropic particle momen-
tum distributions are presented. They confirm the existence of plasma instabilities for weak initial fields
and of their saturation at a level where the particle motion is affected, similar to Abelian plasmas. The
isotropization of the particle momenta by strong random fields is shown explicitly, as well as their nearly
exponential distribution up to a typical hard scale, which arises from scattering off field fluctuations. By
variation of the lattice spacing we show that the effects described here are independent of the UV field
modes near the end of the Brioullin zone.

PACS. 12.38.Mh Quark-gluon plasma – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes
– 25.75.-q Relativistic heavy-ion collisions

1 Introduction

Recently, it has been realized that non-Abelian collective
plasma processes such as Weibel-like instabilities might
play an important role for the thermalization process in
the early stage of high-energy heavy-ion collisions. This
was the central topic of this workshop on Quark-Gluon-
Plasma Thermalization in Vienna. If so, a quantitative
understanding of such processes will be crucial to answer,
for example, the question about the maximum temper-
ature achieved in such collisions at the BNL-RHIC and
CERN-LHC colliders.
The physics of non-Abelian plasma instabilities in the

context of relativistic heavy-ion collisions has been dis-
cussed in some detail in a recent review [1] and in many
contributions to this workshop. We shall therefore refrain
from a detailed presentation here. Rather, we focus on
illustrating the generalization of Abelian particle-in-cell
simulations to the SU(2) gauge group. These provide some
additional insight into the physics of non-Abelian plasmas
beyond the “Hard Loop” approximation which underlies
much of the present analytical and numerical understand-
ing of SU(2) instabilities [2]. Simulations of the non-linear
Vlasov-Yang-Mills theory account for the back-reaction of
the fields on the particles, which damps (and eventually
shuts off) the exponential growth of the chromo-magnetic
fields. They also enable us to actually look at the time
evolution and eventual isotropization of the particle mo-
menta themselves. Another motivation for performing full
particle-field simulations is the potential interest in initial
conditions where the fields are strong and immediately af-
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fect the particle motion. Some of our results have been
published in ref. [3].

2 Particle-in-cell simulations for non-Abelian

gauge theories

We consider the classical transport equation for hard glu-
ons with non-Abelian color charge Qa in the collisionless
approximation [4,5]

pµ[∂µ − gQaF a
µν∂

ν
p − gfabcA

b
µQ

c∂Qa ]f(x, p,Q) = 0 , (1)

where f denotes the one-particle phase-space distribution
function. We employ the test particle method, replacing
the continuous distribution f(t,x,p,Q) by a large number
of test particles:

f(t,x,p, Q) =

1

Ntest

∑

i

δ(x−xi(t))(2π)
3δ(p−pi(t))δ(Q−Qi(t)). (2)

ri(t), pi(t), Qi(t) are the phase-space coordinates of an
individual test particle. (We consider particles in the ad-
joint representation of color-SU(Nc), hence Q is a vector
in (N2

c −1)-dimensional color space.) This Ansatz leads to
Wong’s equations [4,5]

dxi

dt
= vi,

dpi

dt
= gQa

i (E
a + vi ×Ba) ,

dQi

dt
= igvµi [Aµ, Qi], (3)
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for the i-th (test) particle, coupled to the Yang-Mills equa-
tion

dAi

dt
= Ei,

dEi

dt
=DjF

ji−
g

Ntest

∑

k

Qkv
iδ(x− xk),

(i = x, y, z), (4)

in the temporal gauge A0 = 0. This set of equations re-
produces the “hard thermal loop” effective theory [5] near
equilibrium. In the following, we assume that the fields
only depend on time and on one spatial coordinate, x,
which reduces the Yang-Mills equations to 1+1 dimen-
sions. The particles are allowed to propagate in three spa-
tial dimensions. This is referred to as 1D-3V simulations.
Numerical techniques to solve the classical field equa-

tions coupled to colored point-particles have been devel-
oped in ref. [6]. Our update algorithm is closely related to
the one explained there, which we briefly summarize. We
employ the so-called Nearest-Grid-Point (NGP) method
which simply counts the number of particles N(j) within
a distance ±a/2 of the j-th lattice site to obtain the den-
sity nj = N(j)/a (with a the lattice spacing). If a particle
crosses a cell, a current Jx is generated. For example, if a
particle crosses from site i to i+ 1,

Jx(t, i) =
gQ

a3Ntest

δ

(

t

a
−

tcross
a

)

. (5)

The color charge then has to be parallel transported to
the next site,

Q(i+ 1) = U †x(i)Q(i)Ux(i) . (6)

The gauge links are related to the continuum fields via
Ux(i) = exp(igaAx(i)). In this way, the continuity equa-
tion for color charge is satisfied locally, together with
Gauss’s law. At tcross we also update the particle momen-
tum px by imposing energy momentum conservation in the
presence of the chromo-electric field Ex(i). On the other
hand, the rotation of a particle’s momentum due to the
color-magnetic field is updated in every time step.
For 1D-3V simulations a major simplification arises

from the fact that the transverse current

J⊥(t,x) =
g

Ntest

∑

i

Qiv⊥δ(x− xi(t)) (7)

can be updated continuously in time. Note that the color
rotation due to the gauge fields Ay and Az (which in fact
become adjoint scalars in 1D) is also continuous in time.
Therefore, our transverse current is very smooth and much
less noisy than Jx which is obtained in the impulse approx-
imation. However, for 1D-3V simulations the longitudinal
current can also be made sufficiently smooth by employ-
ing a large number of test particles. Such a “brute-force”
approach is no longer feasible for 3D-3V simulations.
To check the numerical accuracy, we have first per-

formed simulations for isotropic momentum distributions,
varying the lattice spacing and the number of test particles
(fig. 1). The field energy density is determined from the
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Fig. 1. Time evolution of the average field energy density for
isotropic particle momentum distributions on two different lat-
tices (with the same physical size L) and for varying number
of test particles. Nc = 2 color simulations.

lattice field strength EL ≡ ga2E as g2ε = (1/2)E2

L/a
4,

plus the magnetic contribution. One observes that the
time evolution stabilizes with increasing number of test
particles and decreasing lattice spacing. However, to reach
sufficient accuracy our runs required several hundred to
a thousand test particles per lattice site, corresponding
to ≈ 6 hours run-time on a single-processor 2.4 GHz
Opteron workstation per initial condition. It is there-
fore clear that a simple-minded extension of the point-
particle algorithm to 3D-3V simulations is impossible. For
multi-dimensional simulations, a generalization of current
smearing from U(1) [7] to non-Abelian gauge groups is
essential. Non-Abelian simulations which include fluctua-
tions of the fields in the transverse plane would be very
interesting because of indications that this leads to the de-
velopment of a turbulent cascade which transfers energy
from the soft unstable modes to stable UV field modes
(near k ∼ 1/a). This process, which is due to the self-
interaction of the gauge field in the SU(2) theory, effec-
tively tames the exponential growth of the fields [8].

3 Anisotropic initial distribution

In what follows, we consider anisotropic initial momentum
distributions of the hard gluons,

f(p,x) ∝ exp
(

−
√

p2
y + p2

z/phard

)

δ(px) . (8)

This represents a quasi-thermal distribution in two dimen-
sions, with “temperature” = phard.



A. Dumitru and Y. Nara: Numerical simulation of non-Abelian particle-field dynamics 67

76

78

80

82

, SU(2)2 g×kinetic energy density 
, U(1)2 g×kinetic energy density 

ctime t/L/N
0 0.2 0.4 0.6 0.8 1

fie
ld

 e
ne

rg
y 

de
ns

iti
es

-210

-110

1

10

(E) SU(2)ε2g
(B) SU(2)ε2g
(E) U(1)ε2g
(B) U(1)ε2g

Fig. 2. Time evolution of the kinetic (particle), and magnetic-
and electric-field energy densities for U(1) and SU(2) gauge
group, respectively.

The initial field amplitudes are sampled from a Gaus-
sian distribution with a width tuned to a given initial en-
ergy density. We solve the Yang-Mills equations in A0 = 0
gauge and also set A = 0 at time t = 0; the initial elec-
tric field is taken to be polarized in a random direction
transverse to the x-axis. This initial condition is conve-
nient because Gauss’s law DiE

i = ρ then implies local
(color) charge neutrality at t = 0, allowing for a straight-
forward initialization. Of course, magnetic and longitu-
dinal electric-field components quickly build up as time
progresses.
We first show results for a relatively large separation

of initial particle and field energy densities which should
qualitatively resemble the conditions studied in [2,8]. The
results shown in fig. 2 correspond to a lattice of physical
size L = 40 fm and Nx = 1024 sites (the plots shown in
ref. [3] correspond to the same L but half the number of
lattice sites). The hard scale was chosen as phard = 10 GeV
(in lattice units, pL,hard = aphard), and the particle density
g2n = 10 fm−3 (we define the density in lattice units as
nL = g2a3n). The above definitions of the lattice Hamilto-
nian, fields and phase-space distribution function remove
any explicit reference to the gauge coupling g from the
lattice theory.
For the Abelian theory we observe a rapid exponen-

tial growth of the magnetic-field energy density, starting
at about t/L ≈ 0.1; we repeat that in order to avoid a
“fake” growth of the fields during this initial transient
time, one has to ensure that the number of test particles
is sufficiently large. At a time t/L ≈ 0.4 the magnetic-field
strength has grown by about one order of magnitude. The
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Fig. 3. Time evolution of the field energy density on two dif-
ferent lattices (with the same physical size L); Np denotes the
number of test particles per lattice site.

fields clearly affect the particles, which loose energy. In
turn, at this time the exponential growth of the magnetic
fields is slowed down. The electric field grows less rapidly
and equipartitioning is not achieved within the depicted
time interval.
The non-Abelian case features a rather similar evolu-

tion for short times (t/L/Nc ≈ 0.2 for electric fields and
≈ 0.3 for magnetic fields, respectively). We scaled time
by 1/Nc because such a scaling is natural in the linear
regime [2]. The growth of the magnetic field then satu-
rates somewhat earlier than for the U(1) theory, and due
to commutators, the electric field has more strength by the
end of the simulation. Due to the somewhat earlier sat-
uration of the instability, the colored particles loose less
of their energy to the fields than was the case for elec-
tric charges. Nevertheless, at a purely qualitative level the
U(1) and SU(2) simulations are not extremely different,
which is due to the phenomenon of “Abelianization” in
1D-3V simulations [1,2]. This does not occur in 3D.
In fig. 3 we compare results obtained on two different

lattices with Nx = 512 and Nx = 1024 sites, respectively,
for the same set of physical parameters. One observes that
the growth rate of the instability, the saturation level and
time are nearly the same. This confirms the underlying
physical picture that the dynamics is dominated by the
unstable soft field modes rather than UV modes near the
end of the Brioullin zone. If field modes with k ∼ 1/a
affected the dynamics then the continuum limit would not
exist.
Our 1D-3V simulations thus clearly confirm the ex-

istence of instabilities in non-Abelian plasmas and the
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Fig. 4. Initial and final particle distribution functions for the
strong field case on a Nx = 512 lattice.

idea of “Abelianization”, namely that the field growth is
perhaps damped by self-interactions but does not shut
down until the fields have grown so much as to affect the
motion of the particles. Nevertheless, the number of e-
foldings by which the field energy density grows is much
less spectacular in our simulations than for simulations
within the “hard-loop” approximation [2]. This is due
to the fact that our initial field amplitudes are already
relatively large (non-linear regime). At a technical level,
point-particle simulations are not very well suited to study
the extreme weak-field regime, which would require a pro-
hibitively large number of particles.
Once the fields have grown strong, they deflect the par-

ticles from their straight-line trajectories and finally lead
to isotropization of their momentum distributions, shown
explicitly in refs. [3]. This process represents the domi-
nant contribution to the build-up of longitudinal pressure.
Figures 4, 5 depict the evolution of the particle distri-
bution function. This result was obtained with “strong-
field” initial conditions: phard = 1 GeV and initial field
energy density ≈ 10−1 GeV/fm3/g2; the time scale is set
by the lattice size, L = 10 fm for this simulation. When
the separation between hard and soft modes is not so
large, strong instabilities cannot develop as the system
approaches isotropy very quickly [3].
In fact, propagation in strong random fields not only

leads to isotropic but even to nearly exponential particle
momentum distributions, as can be seen from fig. 4. All
particles with momenta up to ∼ phard appear to be more
or less thermalized. Once again, we check the dependence
on the lattice spacing by comparing results obtained on
different lattices. We confirm numerically that the process
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Fig. 5. The same as fig. 4 for a Nx = 1024 lattice.

does not appear to be dominated by the ultraviolet modes
of the fields on the lattice.
Field fluctuations generate an effective collision term

mediating soft exchanges. Defining

f(x, p,Q) = 〈f〉+ δf, Aa
µ = 〈A

a
µ〉+ δAa

µ, (9)

where 〈 〉 denotes the ensemble average, and 〈δf〉 =
〈δAa

µ〉 = 0, one can obtain the Balescu-Lenard collision
term from the fluctuation part, showing the correspon-
dence between fluctuations and collisions in an Abelian
plasma [9]. For the non-Abelian case, see refs. [10]. We
also note that the mean entropy density is no longer con-
served in the presence of fluctuations.

We thank the organizers of the QGPTH05 Workshop for the
opportunity to participate and to present our work, and, of
course, for the invitation to visit Vienna.
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